Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis.

Identifieur interne : 002640 ( Main/Exploration ); précédent : 002639; suivant : 002641

Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis.

Auteurs : Peng Shuai [République populaire de Chine] ; Dan Liang ; Zhoujia Zhang ; Weilun Yin ; Xinli Xia

Source :

RBID : pubmed:23570526

Descripteurs français

English descriptors

Abstract

BACKGROUND

MicroRNAs (miRNAs) are endogenous small RNAs (sRNAs) with a wide range of regulatory functions in plant development and stress responses. Although miRNAs associated with plant drought stress tolerance have been studied, the use of high-throughput sequencing can provide a much deeper understanding of miRNAs. Drought is a common stress that limits the growth of plants. To obtain more insight into the role of miRNAs in drought stress, Illumina sequencing of Populus trichocarpa sRNAs was implemented.

RESULTS

Two sRNA libraries were constructed by sequencing data of control and drought stress treatments of poplar leaves. In total, 207 P. trichocarpa conserved miRNAs were detected from the two sRNA libraries. In addition, 274 potential candidate miRNAs were found; among them, 65 candidates with star sequences were chosen as novel miRNAs. The expression of nine conserved miRNA and three novel miRNAs showed notable changes in response to drought stress. This was also confirmed by quantitative real time polymerase chain reaction experiments. To confirm the targets of miRNAs experimentally, two degradome libraries from the two treatments were constructed. According to degradome sequencing results, 53 and 19 genes were identified as targets of conserved and new miRNAs, respectively. Functional analysis of these miRNA targets indicated that they are involved in important activities such as the regulation of transcription factors, the stress response, and lipid metabolism.

CONCLUSIONS

We discovered five upregulated miRNAs and seven downregulated miRNAs in response to drought stress. A total of 72 related target genes were detected by degradome sequencing. These findings reveal important information about the regulation mechanism of miRNAs in P. trichocarpa and promote the understanding of miRNA functions during the drought response.


DOI: 10.1186/1471-2164-14-233
PubMed: 23570526
PubMed Central: PMC3630063


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis.</title>
<author>
<name sortKey="Shuai, Peng" sort="Shuai, Peng" uniqKey="Shuai P" first="Peng" last="Shuai">Peng Shuai</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biological Sciences and Biotechnology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing 100083, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Biotechnology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liang, Dan" sort="Liang, Dan" uniqKey="Liang D" first="Dan" last="Liang">Dan Liang</name>
</author>
<author>
<name sortKey="Zhang, Zhoujia" sort="Zhang, Zhoujia" uniqKey="Zhang Z" first="Zhoujia" last="Zhang">Zhoujia Zhang</name>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23570526</idno>
<idno type="pmid">23570526</idno>
<idno type="doi">10.1186/1471-2164-14-233</idno>
<idno type="pmc">PMC3630063</idno>
<idno type="wicri:Area/Main/Corpus">002641</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002641</idno>
<idno type="wicri:Area/Main/Curation">002641</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002641</idno>
<idno type="wicri:Area/Main/Exploration">002641</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis.</title>
<author>
<name sortKey="Shuai, Peng" sort="Shuai, Peng" uniqKey="Shuai P" first="Peng" last="Shuai">Peng Shuai</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biological Sciences and Biotechnology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing 100083, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Biotechnology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liang, Dan" sort="Liang, Dan" uniqKey="Liang D" first="Dan" last="Liang">Dan Liang</name>
</author>
<author>
<name sortKey="Zhang, Zhoujia" sort="Zhang, Zhoujia" uniqKey="Zhang Z" first="Zhoujia" last="Zhang">Zhoujia Zhang</name>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Inverted Repeat Sequences (MeSH)</term>
<term>MicroRNAs (metabolism)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>RNA, Small Interfering (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Banque de gènes (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Petit ARN interférent (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Sécheresses (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Séquences répétées inversées (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Petit ARN interférent</term>
<term>Populus</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Droughts</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Library</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Inverted Repeat Sequences</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Banque de gènes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Sécheresses</term>
<term>Séquence nucléotidique</term>
<term>Séquences répétées inversées</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>MicroRNAs (miRNAs) are endogenous small RNAs (sRNAs) with a wide range of regulatory functions in plant development and stress responses. Although miRNAs associated with plant drought stress tolerance have been studied, the use of high-throughput sequencing can provide a much deeper understanding of miRNAs. Drought is a common stress that limits the growth of plants. To obtain more insight into the role of miRNAs in drought stress, Illumina sequencing of Populus trichocarpa sRNAs was implemented.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Two sRNA libraries were constructed by sequencing data of control and drought stress treatments of poplar leaves. In total, 207 P. trichocarpa conserved miRNAs were detected from the two sRNA libraries. In addition, 274 potential candidate miRNAs were found; among them, 65 candidates with star sequences were chosen as novel miRNAs. The expression of nine conserved miRNA and three novel miRNAs showed notable changes in response to drought stress. This was also confirmed by quantitative real time polymerase chain reaction experiments. To confirm the targets of miRNAs experimentally, two degradome libraries from the two treatments were constructed. According to degradome sequencing results, 53 and 19 genes were identified as targets of conserved and new miRNAs, respectively. Functional analysis of these miRNA targets indicated that they are involved in important activities such as the regulation of transcription factors, the stress response, and lipid metabolism.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>We discovered five upregulated miRNAs and seven downregulated miRNAs in response to drought stress. A total of 72 related target genes were detected by degradome sequencing. These findings reveal important information about the regulation mechanism of miRNAs in P. trichocarpa and promote the understanding of miRNA functions during the drought response.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23570526</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2013</Year>
<Month>Apr</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>233</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-14-233</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">MicroRNAs (miRNAs) are endogenous small RNAs (sRNAs) with a wide range of regulatory functions in plant development and stress responses. Although miRNAs associated with plant drought stress tolerance have been studied, the use of high-throughput sequencing can provide a much deeper understanding of miRNAs. Drought is a common stress that limits the growth of plants. To obtain more insight into the role of miRNAs in drought stress, Illumina sequencing of Populus trichocarpa sRNAs was implemented.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Two sRNA libraries were constructed by sequencing data of control and drought stress treatments of poplar leaves. In total, 207 P. trichocarpa conserved miRNAs were detected from the two sRNA libraries. In addition, 274 potential candidate miRNAs were found; among them, 65 candidates with star sequences were chosen as novel miRNAs. The expression of nine conserved miRNA and three novel miRNAs showed notable changes in response to drought stress. This was also confirmed by quantitative real time polymerase chain reaction experiments. To confirm the targets of miRNAs experimentally, two degradome libraries from the two treatments were constructed. According to degradome sequencing results, 53 and 19 genes were identified as targets of conserved and new miRNAs, respectively. Functional analysis of these miRNA targets indicated that they are involved in important activities such as the regulation of transcription factors, the stress response, and lipid metabolism.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">We discovered five upregulated miRNAs and seven downregulated miRNAs in response to drought stress. A total of 72 related target genes were detected by degradome sequencing. These findings reveal important information about the regulation mechanism of miRNAs in P. trichocarpa and promote the understanding of miRNA functions during the drought response.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shuai</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Biotechnology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing 100083, P.R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Dan</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhoujia</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Weilun</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Xinli</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055029" MajorTopicYN="N">Inverted Repeat Sequences</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>08</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23570526</ArticleId>
<ArticleId IdType="pii">1471-2164-14-233</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-14-233</ArticleId>
<ArticleId IdType="pmc">PMC3630063</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO Rep. 2009 Mar;10(3):264-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19180117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 29;286(5441):950-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Nov;16(11):953-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11159306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Mar;43(3):323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Sep 20;297(5589):2053-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Feb;24(2):233-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Apr 30;304(5671):734-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15118162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Aug 18;23(16):3356-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15282547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12753-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Dec 3;75(5):843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8252621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1997 Oct;7(10):986-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9331369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3784-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):2911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15217813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Feb;56(412):605-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15582929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 17;433(7027):769-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15685193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Apr 22;121(2):207-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1376-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15829603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2204-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11928-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(4):592-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Oct;52(1):133-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17672844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2007 Oct 31;14(5):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18166134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 4;133(1):116-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2009 Apr;91(4):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Jun;230(1):227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19415325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(1):62-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19402879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1966-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Feb;231(3):705-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20012085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20021695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 May;153(1):185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):590-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20630103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Sep;154(1):245-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):4011-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Aug;22(8):2660-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Oct;61(15):4157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2010 Nov;10(4):493-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20676715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21037258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21062808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):3765-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2011 Oct;49(2):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21359858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Oct;30(10):1893-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21706230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Oct;68(2):287-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21736650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1300-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21941002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Nov;53(11):879-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22013976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 Jan 13;417(2):892-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e33034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e32017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22470418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 May;235(5):873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2012 Jun;12(2):327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22415631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2012 Aug 10;504(2):160-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22634103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012;12:132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22862743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e46703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23071617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 Oct 19;427(2):330-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23000164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 May;14(5):836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 May 20;18(10):758-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18472421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Dec;5(12):1005-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19034268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Dec;31(12):1834-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18771575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jan 1;25(1):130-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19017659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):669-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):356-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247285</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Liang, Dan" sort="Liang, Dan" uniqKey="Liang D" first="Dan" last="Liang">Dan Liang</name>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
<name sortKey="Zhang, Zhoujia" sort="Zhang, Zhoujia" uniqKey="Zhang Z" first="Zhoujia" last="Zhang">Zhoujia Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Shuai, Peng" sort="Shuai, Peng" uniqKey="Shuai P" first="Peng" last="Shuai">Peng Shuai</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002640 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002640 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23570526
   |texte=   Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23570526" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020